多项式阶数的改变会显著影响回归模型对于数据的拟合程度,具体证明可由泰勒展开式得到。
在回归模型中,权衡欠拟合(under-fitting)和过拟合(over-fitting)最重要的因素是多项式的阶数。因此,正确答案是A: 多项式阶数。
**专业分析:**
1. **多项式阶数**:
- 多项式回归模型的阶数(即多项式的次数)直接影响模型的复杂度。较低的阶数可能导致欠拟合,因为模型过于简单,无法捕捉数据中的复杂模式。较高的阶数可能导致过拟合,因为模型过于复杂,可能会捕捉到数据中的噪声,从而在训练数据上表现很好,但在新数据上表现较差。因此,选择适当的多项式阶数是权衡欠拟合和过拟合的关键。
2. **更新回归参数w时,使用的是协方差矩阵求逆还是梯度下降**:
- 这主要是关于优化方法的选择。协方差矩阵求逆和梯度下降都是用于求解回归参数的方法,但它们对欠拟合和过拟合的影响相对较小。优化方法的选择更多地影响计算效率和数值稳定性,而不是模型的拟合程度。
3. **使用常数项**:
- 使用常数项(截距项)可以帮助模型更好地拟合数据,但它并不是决定欠拟合或过拟合的主要因素。常数项的存在可以使模型更灵活,但其影响相对较小。
综上所述,多项式阶数在权衡欠拟合和过拟合中影响最大,因此正确答案是A。