CDA数据分析师

CDA数据分析师

考试报名
考试报名
考试内容
考试大纲
在线客服
返回顶部

5 分钟,教你用 Docker 部署一个 Python 应用

2023-02-08

作者:星安果

来源:AirPython

在使用传统物理机或云服务器上部署项目都会存在一些痛点

比如:项目部署速度慢、资源浪费、迁移难且扩展低

而使用 Docker 部署项目的优势包含:

  • 高效利用系统资源
  • 服务启动更快
  • 环境一致,迁移更加方便

本篇文章将介绍 Docker 部署一个 Python 项目的常规流程

1. Dockerfile 描述文件

Dockerfile 是一个放置在项目根目录下的描述文件,可以利用 Docker 命令基于该文件构建一个镜像

常用的指令包含:

  • FROM
  • 用于定义基础镜像
  • MAINTAINER
  • 指定维护者信息,可以省略不写
  • RUN
  • 和「 安装命令 」连接在一起,可用于安装工具依赖包
  • ADD
  • 将宿主机的文件,并进行解压
  • COPY
  • 和 ADD 指令功能一样,但是不会进行解压操作
  • WORKDIR
  • 用于切换工作目录
  • VOLUME
  • 配置宿主机与容器的目录映射
  • EXPOSE
  • 配置容器内项目对外暴露的端口号
  • CMD
  • 指定容器启动后,运行的命令
  • 比如,可以运行某个命令启动项目

2. 实战一下

使用 Docker 部署应用的常规流程是:

  • 开发项目并本地测试通过
  • 编写 Dockerfile 放置到项目根目录
  • 打包镜像文件
  • 运行镜像容器
  • 测试

为了演示方便,这里以一个简单的 Flask 项目为例进行讲解

2-1 项目开发

from flask import Flask
# 安装依赖
# pip3 install -U flask
app = Flask(__name__)
@app.route('/')
def index():
return "测试容器部署!"
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8888)
# 浏览器访问测试
# http://127.0.0.1:8888/

项目开发完成,并在本地测试通过后就可以编写 Dockerfile 文件了

2-2 编写 Dockerfile

在项目根目录下,创建一个 Dockerfile 文件,使用上面的指令编写描述脚本

需要注意的是,这里使用「 EXPOSE 」指令暴露的端口号与入口文件定义的端口号保持一致

# Dockerfile
FROM centos:7.9.2009
RUN yum makecache fast;
RUN yum install python3-devel python3-pip -y
RUN pip3 install -i https://pypi.douban.com/simple flask
COPY main.py /opt
WORKDIR /opt
EXPOSE 8888
CMD ["python3","main.py"]

2-3 构建镜像

# 在当前文件夹下,根据Dockerfile文件构建一个镜像
# 镜像名称:xag/my_flask_web
# --no-cache:不使用旧的缓存进行镜像构建
docker build --no-cache -t "xag/my_flask_web" .

2-4 运行镜像容器

使用 docker run 命令基于镜像运行一个容器

其中

  • -d:代表容器在后台运行,不是基于前台运行
  • --name:用于执行容器的别名
  • -p:用于配置宿主机与容器的端口映射

# -d:后台运行
# 宿主机(9999)映射容器内的8888(上面Dockerfile已经暴露了8888端口)
docker run -d --name flask_web -p 9999:8888 xag/my_flask_web

2-5 测试一下

最后在浏览器中,通过宿主机暴露的端口号 9999 访问项目了

访问地址:http://127.0.0.1:9999/


3. 总结

文章中以一个简单的 Web 项目阐述了利用 Docker 部署项目的常规流程

实际上,Dockerfile 非常的灵活,它还支持 ARG/ENV 设置环境变量,VOlUME 指令挂载目录,ENTRYPOINT 配置启动程序和参数等,这部分内容大家可以根据官网介绍自行进行扩展

完 谢谢观看